Initial Testing of a Massively Parallel Ensemble Kalman Filter with the Poseidon Isopycnal Ocean General Circulation Model

نویسندگان

  • CHRISTIAN L. KEPPENNE
  • MICHELE M. RIENECKER
چکیده

A multivariate ensemble Kalman filter (MvEnKF) implemented on a massively parallel computer architecture has been developed for the Poseidon ocean circulation model and tested with a Pacific basin model configuration. There are about 2 million prognostic state-vector variables. Parallelism for the data assimilation step is achieved by regionalization of the background-error covariances that are calculated from the phase–space distribution of the ensemble. Each processing element (PE) collects elements of a matrix measurement functional from nearby PEs. To avoid the introduction of spurious long-range covariances associated with finite ensemble sizes, the background-error covariances are given compact support by means of a Hadamard (element by element) product with a three-dimensional canonical correlation function. The methodology and the MvEnKF implementation are discussed. To verify the proper functioning of the algorithms, results from an initial experiment with in situ temperature data are presented. Furthermore, it is shown that the regionalization of the background covariances has a negligible impact on the quality of the analyses. Even though the parallel algorithm is very efficient for large numbers of observations, individual PE memory, rather than speed, dictates how large an ensemble can be used in practice on a platform with distributed memory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assimilation of temperature into an isopycnal ocean general circulation model using a parallel ensemble Kalman filter

Temperature data from the Tropical Atmosphere and Ocean (TAO) array are assimilated into the Pacific basin configuration of the Poseidon quasi-isopycnal ocean general circulation model (OGCM) using a multivariate ensemble Kalman filter (EnKF) implemented on a massively parallel computer architecture. An assimilation algorithm whereby each processing element (PE) solves a localized analysis prob...

متن کامل

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

The local ensemble transform Kalman filter and the running-in-place algorithm applied to a global ocean general circulation model

The most widely used methods of data assimilation in large-scale oceanography, such as the Simple Ocean Data Assimilation (SODA) algorithm, specify the background error covariances and thus are unable to refine the weights in the assimilation as the circulation changes. In contrast, the more computationally expensive Ensemble Kalman Filters (EnKF) such as the Local Ensemble Transform Kalman Fil...

متن کامل

Software for ensemble-based data assimilation systems - Implementation strategies and scalability

Data assimilation algorithms combine a numerical model with observations in a quantitative way. For an optimal combination either variational minimization algorithms or ensemble-based estimation methods are applied. The computations of a data assimilation application are usually far more costly than a pure model integration. To cope with the large computational costs, a good scalability of the ...

متن کامل

Initialization of an ENSO Forecast System Using a Parallelized Ensemble Filter

As a first step toward coupled ocean–atmosphere data assimilation, a parallelized ensemble filter is implemented in a new stochastic hybrid coupled model. The model consists of a global version of the GFDL Modular Ocean Model Version 4 (MOM4), coupled to a statistical atmosphere based on a regression of National Centers for Environmental Prediction (NCEP) reanalysis surface wind stress, heat, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002